Inhibition of JNK potentiates temozolomide-induced cytotoxicity in U87MG glioblastoma cells via suppression of Akt phosphorylation.

نویسندگان

  • Van Anh Vo
  • Jae-Won Lee
  • Hee Jae Lee
  • Wanjoo Chun
  • So Young Lim
  • Sung-Soo Kim
چکیده

Glioblastoma (formally glioblastoma multiforme, GBM) represents both the most common and most malignant variant among numerous of primary brain tumors. Temozolomide (TMZ) has been used for the treatment of glioblastoma. However, less than 1/3 of glioblastomas respond to TMZ-based therapies. Therefore, strategies to enhance the effect of TMZ are needed for more effective targeted therapeutics. Stress-activated protein kinases (SAPKs) JNK and p38 MAPK have been known to have apoptotic or anti-apoptotic effects depending on cell type and condition. On the other hand, Akt is a key regulator of cellular survival and has direct effects on the apoptosis machinery. In addition, it was discovered that Akt activation is primed by the activity of JNK. We, therefore, examined whether inhibition of JNK or p38 potentiates TMZ-induced apoptosis in U87MG cells via inhibition of Akt activation. TMZ significantly induced Akt activation as well as JNK or p38 activation. Inhibition of JNK suppressed Akt activation and potentiated TMZ-induced cytotoxicity. The phosphorylation of GSK-3β and Bad, the downstream mediators of Akt, was also suppressed by the inhibition of JNK. The present data strongly suggest that there may be a crosstalk between JNK pathway and Akt pathway in glioblastoma and that further investigation based on the present data may provide a valuable approach for enhancing TMZ-induced cytotoxicity in glioblastoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line

Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...

متن کامل

The Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study

Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...

متن کامل

Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence.

Pharmacologic inhibition of the DNA signal transducers Chk1 and p38 blocks G2 arrest and sensitizes glioblastoma cells to chemotherapeutic methylating agent-induced cytotoxicity. Because Akt pathway activation has been suggested to also block G2 arrest induced by DNA-damaging agents and because glioma cells frequently have high levels of Akt activation, we examined the contribution of the Akt p...

متن کامل

Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase....

متن کامل

Inhibition of Akt phosphorylation attenuates resistance to TNF-α cytotoxic effects in MCF-7 cells, but not in their doxorubicin resistant derivatives

Objective(s): Acquisition of TNF-α resistance plays role in the onset and growth of malignant tumors. Previous studies have demonstrated that MCF-7 cell line and its doxorubicin resistant variant MCF-7/Adr are resistant against the cytotoxic effects of TNF-α. In this study, we investigated the role of Akt activation in resistance of MCF-7 and MCF-7/Adr against TNF-α cytotoxicity. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anticancer research

دوره 34 10  شماره 

صفحات  -

تاریخ انتشار 2014